2,962 research outputs found

    Optical and EUV Light Curves of Dwarf Nova Outbursts

    Get PDF
    We combine AAVSO and VSS/RASNZ optical and Extreme Ultraviolet Explorer EUV light curves of dwarf novae in outburst to place constraints on the nature of dwarf nova outbursts. From the observed optical-EUV time delays of 0.75-1.5 days, we show that the propagation velocity of the dwarf nova instability heating wave is ~ 3 km/s

    A potentiometric analyser based on the ZX81 microcomputer

    Get PDF

    FUSE observations of HD 5980: The wind structure of the eruptor

    Get PDF
    HD 5980 is a unique system containing one massive star (star A) that is apparently entering the luminous blue variable phase, and an eclipsing companion (star B) that may have already evolved beyond this phase to become a Wolf-Rayet star. In this paper we present the results from FUSE observations obtained in 1999, 2000, and 2002 and one far-UV observation obtained by ORFEUS/BEFS in 1993 shortly before the first eruption of HD 5980. The eight phase-resolved spectra obtained by FUSE in 2002 are analyzed in the context of a wind-eclipse model. This analysis shows that the wind of the eruptor obeyed a very fast velocity law in 2002, which is consistent with the line-driving mechanism. Large amplitude line-profile variations on the orbital period are shown to be due to the eclipse of star B by the wind of star A, although the eclipse due to gas flowing in the direction of star B is absent. This can only be explained if the wind of star A is not spherically symmetric, or if the eclipsed line radiation is "filled-in" by emission originating from somewhere else in the system, e.g., in the wind-wind collision region. Except for a slightly lower wind speed, the ORFEUS/BEFS spectrum is very similar to the spectrum obtained by FUSE at the same orbital phase: there is no indication of the impending eruption. However, the trend for decreasing wind velocity suggests the occurrence of the "bi-stability" mechanism, which in turn implies that the restructuring of the circumbinary environment caused by the transition from "fast, rarefied wind" to "slow, dense wind" was observed as the eruptive event. The underlying mechanism responsible for the long-term decrease in wind velocity that precipitated this change remains an open issue.Comment: 19 pages, 13 figure

    Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice

    Get PDF
    Recent years have seen a rapid reduction in the summer Arctic sea ice extent. To both understand this trend and project the future evolution of the summer Arctic sea ice, a better understanding of the physical processes that drive the seasonal loss of sea ice is required. The marginal ice zone, here defined as regions with between 15 % and 80 % sea ice cover, is the region separating pack ice from the open ocean. Accurate modelling of this region is important to understand the dominant mechanisms involved in seasonal sea ice loss. Evolution of the marginal ice zone is determined by complex interactions between the atmosphere, sea ice, ocean, and ocean surface waves. Therefore, this region presents a significant modelling challenge. Sea ice floes span a range of sizes but sea ice models within climate models assume they adopt a constant size. Floe size influences the lateral melt rate of sea ice and momentum transfer between atmosphere, sea ice, and ocean, all important processes within the marginal ice zone. In this study, the floe size distribution is represented as a power law defined by an upper floe size cut-off, lower floe size cut-off, and power-law exponent. This distribution is also defined by a new tracer that varies in response to lateral melting, wave-induced break-up, freezing conditions, and advection. This distribution is implemented within a sea ice model coupled to a prognostic ocean mixed-layer model. We present results to show that the use of a power-law floe size distribution has a spatially and temporally dependent impact on the sea ice, in particular increasing the role of the marginal ice zone in seasonal sea ice loss. This feature is important in correcting existing biases within sea ice models. In addition, we show a much stronger model sensitivity to floe size distribution parameters than other parameters used to calculate lateral melt, justifying the focus on floe size distribution in model development. We also find that the attenuation rate of waves propagating under the sea ice cover modulates the impact of wave break-up on the floe size distribution. It is finally concluded that the model approach presented here is a flexible tool for assessing the importance of a floe size distribution in the evolution of sea ice and is a useful stepping stone for future development of floe size modelling

    Epilogue: systems approaches and systems practice

    Get PDF
    Each of the five systems approaches discussed in this volume: system dynamics (SD), the viable systems model (VSM), strategic options development and analysis (SODA), soft systems methodology (SSM) and critical systems heuristics (CSH) has a pedigree. Not in the sense of the sometimes absurd spectacle of animals paraded at dog shows. Rather, their pedigree derives from their systems foundations, their capacity to evolve and their flexibility in use. None of the five approaches has developed out of use in restricted and controlled contexts of either low or high levels of complicatedness. Neither has any one of them evolved as a consequence of being applied only to situations with either presumed stakeholder agreement on purpose, or courteous disagreement amongst stakeholders, or stakeholder coercion. The compilation is not a celebration of abstract ‘methodologies’, but of theoretically robust approaches that have a genuine pedigree in practice

    ‘O sibling, where art thou?’ – a review of avian sibling recognition with respect to the mammalian literature

    Get PDF
    Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ‘mixing potential’ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ‘direct familiarisation’ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ‘indirect familiarisation’ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic

    ‘Reflection is embedded in my brain forever now!’: personal development as a core module on an Executive MBA

    Get PDF
    Professional progression and skills development are the main expectations of mid-career managers when enrolling on an Executive MBA (EMBA), yet it can be personal development (PD) that turns out to be the unexpected benefit of management education. Joining a growing number of voices making a case for personal development and self-awareness in management education, and calling for schools to incorporate it in the curriculum, this paper advances the case for personal development as a core Executive MBA module. The paper sets out the holistic rationale and philosophic principles used to design and deliver a course underpinned by curiosity and self-reflection on an EMBA in the United Kingdom, and presents empirical findings from a survey conducted among 230 students and alumni. These suggest that the focus on reflective practice and integration of PD promotes a richer and deeper appreciation of the value of reflection for lasting and sometimes unexpected personal growth. In addition, the raising of awareness of self also brings awareness of others, and develops critical thinking in application of the MBA at work. The paper concludes with a discussion re-evaluating the subject of tacit knowledge in reflective practice

    Social Experimentation as Reflection-in-A ction

    Full text link
    We present the results of our review of some forty community-level interventions undertaken in the developing world over the past twenty years m order to reduce malnourishment in children. We argue that such interventions, if they are considered as social experiments, cannot be assimilated to models of quasi-experimental method. We propose an alternative model of experimentation, which we call "reflection-in-action", which seems to us better suited to account for the kinds ofvahdity and rigor attainable in situations such as these.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68568/2/10.1177_107554708400600101.pd
    corecore